《等腰三角形性质》说课稿

时间:2024-06-04 19:17:29
《等腰三角形性质》说课稿

《等腰三角形性质》说课稿

作为一名专为他人授业解惑的人民教师,就难以避免地要准备说课稿,说课稿有助于提高教师的语言表达能力。那么说课稿应该怎么写才合适呢?以下是小编整理的《等腰三角形性质》说课稿,欢迎阅读,希望大家能够喜欢。

《等腰三角形性质》说课稿1

各位领导、老师们:

大家好!

今天我说课的内容是义务教育课程标准实验教科书《数学》八年级上册第十二章12.3.1等腰三角形性质第一课时。下面,我从教材分析、教法分析、学法分析、教学过程、教学反思五个方面来汇报我对这节课的教学设想。

一、教材分析

1、教材的地位与作用:

本节课内容是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的。使学生学会分析、学会证明,在培养学生的思维能力和推理能力等方面有重要的作用。通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。等腰三角形的性质也是论证两个角相等、两条线段相等、两条直线垂直的重要依据,因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

2、教学目标:

知识技能:理解掌握等腰三角形的性质;运用等腰三角形的性质进行证明和计算。

过程方法:通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。

解决问题:通过观察等腰三角形的对称性,及运用等腰三角形的性质解决有关的问题,提高学生观察、分析、归纳、运用知识解决问题的能力,发展应用意识。

情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

(根据教材内容的地位与作用及教学目标,因此我将把本节课的重点确定为:等腰三角形的性质的探究和应用。由于对文字语言叙述的几何命题的证明要求严格且步骤繁琐,此时八年级学生还没有深刻的理解和熟练的掌握,因此我将把本节课的难点定为:等腰三角形性质的推理证明。)

3、教学重点与难点:

重点:等腰三角形的性质的探索和应用。

难点:等腰三角形性质的推理证明。

二、教法设计:

教法设想:我采用探索发现法和启发式教学法完成本节的教学,在教学中通过创设情景,设计问题,引导学生自主探索,合作交流,组织学生动手操作,观察现象,提出猜想,推理论证等。有效地启发学生的思考,使学生真正成为学习的主体。

三、学法设计:

在学生学习的过程中,我将从两个方面指导学生学习,一方面老师大胆放手,让学生去自主探究等腰三角形的性质,另一方面,在对等腰三角形性质的证明过程中,老师要巧妙引导,分散难点。这样做既有利于活跃学生的思维,又能帮助他们探本求源,这样也体现了以“教师为主导,学生为主体”的新课改背景下的教学原则。

四、教学过程:

根据制定的教学目标,围绕重点,突破难点,我将从以下七个方面设计我的教学过程:

1、创设情景:

首先向同学们出示精美的建筑物图片,并提出问题串:(1)什么是轴对称图形?这些图片中有轴对称图形吗? (2)里面有等腰三角形吗?然后向学生介绍等腰三角形的定义以及边角等相关的概念,由于学生小学就已经接触过,所以学生很容易理解。再提出第三个问题:(3)a.等腰三角形是轴对称图形吗?b.等腰三角形具备哪些性质呢?引出本节课的课题-我们这节课来探究等腰三角形的性质。--板书课题。

2、动手操作,大胆猜想:

①拿出课下制作的等腰三角形的纸片,它是轴对称图形吗?对称轴是谁?用你手中的纸片说明你的看法?②等腰三角形沿对称轴折叠后,你能得到哪些结论?(看谁得到的结论多)

③分组讨论。(看哪一组气氛最活跃,结论又对又多.)

然后小组代表发言,交流讨论结果。

④归纳:你能猜想得到等腰三角形具有什么性质?你能用文字语言归纳一下吗?

(教师引导学生进行总结归纳得出性质1,2)

性质1:等腰三角形的两底角相等。(简写成“等边对等角”)

性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。(简称“三线合一”)

(设计意图:由学生自己动手折纸活动,根据等腰三角形轴对称性,大胆猜测等腰三角形的性质,培养学生的观察分析、概括总结能力。也发展了学生的几何直观。教师在学生猜想的基础上,引导学生观察、完善、归纳出性质1和性质2。培养了学生进行合情推理的能力。)

3、证明猜想,形成定理:

你能证明等腰三角形的性质吗?

对于这种几何命题的证明需要三大步骤:分析题设结论,画出图形写出已知和求证,最后进行推理证明。这对于八年级学段的学生难度较大,为了突破难点,我决定设计以下三个阶梯问题:

(1)找出“性质1”的题设和结论,画出的图形,写出已知和求证。

(2)证明角和角相等有哪些方法?(学生可能会想到平行线的性质,全等三角形的性质)

(3)通过折叠等腰三角形纸片,你认为本题用什么方法证明∠B=∠C,写出证明过程。

问题1的设计使得学生顺利地将文字语言转化为符号语言,帮助学生顺利地写出已知和求证;

问题2提供给学生了解题思路,引导学生用旧的知识解决新的问题,体现了数学的转化思想。找到新知识的生长点,就是三角形的全等。

问题3的设计目的:因为辅助线的添加是本题中的又一难点,因此让学生对折等腰三角形纸片,使两腰重合,使学生在形成感性认识的同时,意识到要证明∠B=∠C,关键是将∠B和∠C放在两三角形中去,构造全等三角形,老师再及时设问:你认为可以通过什么方法可以将∠B和∠C放在两个三角形中去呢?再次让学生思考,由于对知识的发生,发展有了充分的了解,学生探讨以后可能会得出以下三种方法:

(1)作顶角∠BAC的平分线,

(2)作底边BC的中线,

(3)作底边BC的高。以作顶角平分线为例,让一生板演,其他学生在练习本上写出完整的证明过程。以达到规范学生的解题步骤的目的。其他两种证法,让学生课下证明。这样,学生就证明了性质1,同时由于△BAD≌△CAD,也很容易得出等腰三角形的顶角平分线平分底边,并垂直于底边。用类似的方法还可以证明等腰三角形底边的中线平分顶角且垂直于底边,等腰三角形底边上的高平分顶角且平分底边,这也就证明了性质2。

(设计意图:教师精心设计问题串引导学生通过动手,观察,猜想,归纳,猜测出等腰三角形的性质,发展了学生 ……此处隐藏16792个字……在学生充分发表自己想法的基础上给出等腰三角形的画法,并画出图形,然后结合前面剪、画的图形介绍“腰”、“底边”、“顶角”、“底角”等概念。(结合自已剪出的等腰三角形和画出的图形学习相关概念,加深印象。)

(三)了解与探究(14′)

1、提问:刚才剪出的等腰三角形ABC是轴对称图形吗?它的对称轴是什么?

学生思考、回顾剪纸过程,动手把等腰三角形ABC沿折痕对折,容易回答出⊿ABC是轴对称图形,折痕AD所在的直线是它的对称轴。(让学生认识到动手操作也是一种验证方式。)

2、把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角,并填在书上的表格中,你发现了什么现象?能猜一猜等腰三角形ABC有哪些性质吗?

①∠B=∠C→两个底角相等

②BD=CD→AD为底边BC上的中线

③∠BAD=∠CAD→AD为顶角∠BAC的平分线

④∠ADB=∠ADC=90°→AD为底边BC上的高

教师在学生猜想的基础上,引导学生观察、完善、归纳出性质1和性质2:

性质1等腰三角形的两个底角相等(简写成“等边对等角”);

性质2等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简写成“三线合一”)

(通过教师的引导,学生利用等腰三角形的对称性,讨论、归纳出等腰三角形的两条性质,在这个过程中训练学生文字语言与符号语言的互换,培养学生自主探究的学习品质和观察分析、归纳概括的能力,发展形象思维。)

3、用全等三角形的知识验证等腰三角形的性质

(1)性质1(等腰三角形的两个底角相等)的条件和结论分别是什么?用数学符号如何表达条件和结论?如何证明?

教师引导学生根据猜想的结论画出相应的图形,写出已知和求证,师生共同分析证明思路,强调以下两点:

①利用三角形的全等来证明两角相等,为证∠B=∠C,需证明以∠B、∠C为元素的两个三角形全等,需要添加辅助线构造符合证明要求的两个三角形。

②添加辅助线的方法有很多种,常见的有作顶角∠BAC的平分线,或作底边BC上的中线,或作底边BC上的高等,让学生选择一种辅助线并完成证明过程。

(2)回顾性质1的证明方法,你能用这种方法证明性质2(等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合)吗?

让学生模仿证明性质2,并鼓励学生用多种方法证明。

(等腰三角形的性质的探索与验证是本节课的重点和难点,本环节中,充分调动学生的主观能动性,让学生大胆猜想、小心求证,经历性质证明的过程,增强理性认识,体验性质的正确性和辅助线在几何论证中的作用,在学生的自主探索中,完成了重点知识的教学,突破了教学难点,培养了学生的合情推理能力和演绎推理的能力。)

(四)应用与提高(10′)

1、课件出示:某房屋的顶角∠BAC=120°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上的∠B、∠C、∠CAD的度数。

(本节课从居民建筑人字梁结构中抽象出几何问题,通过实践探究活动得出等腰三角形的性质这一结论,在此,再将得到的结论应用到实践中,解决人字梁结构中的实际问题,这样既有前后呼应,又体现了“数学来源于生活,应用于生活”的思想,有利于增强学生的数学应用意识。)

2、课件出示:如图

⑴∵AB=AC,AD⊥BC

∴∠_=∠_,_=_;

⑵∵AB=AC,BD=DC

∴∠_=∠_,_⊥_;

⑶∵AB=AC,AD平分∠BAC

∴_⊥_,_=_

(让学生再次理解和运用等腰三角形的“三线合一”性质,以填空的形式及时巩固所学知识,了解学生的学习效果,增强学生应用知识的能力。)

3、课件出示:如图,在⊿ABC中,AB=AC,点D在AC上,且BD=AD,

⑴图中共有几个等腰三角形?分别写出它们的顶角与底角;

⑵你能求出各角的度数吗?

师生共同分析:⑴已知中没有给出角度,需利用三角形内角和为180°的条件来求具体度数,但由于未知数过多,需根据已知各边的关系寻找到⊿ABC的各角关系,由图中的三个等腰三角形的底角及外角性质,可设∠A=X°,列方程解决。⑵强调此题图形特殊,只有顶角为36°的等腰三角形才能满足。

(改编课本例题,使问题更富层次性与探究性,使学生认识到从复杂图形中分解出等腰三角形是利用性质解决问题的关键,培养学生数形结合的能力和方程的思想。)

等腰三角形的性质的应用,是这节课的又一重点,本环节就是通过运用这一性质解决有关问题,让学生在解答活动中提高运用知识和技能的能力,在掌握重点知识的同时,获得成功的体验,建立学习的自信心。

(五)拓展与延伸(5′)

⑴等腰三角形底边中点到两腰的距离相等吗?

教师指导学生动手画图,折纸,思考,讨论得出结论,并用适当的方法验证这一结论。

⑵利用类似的方法,还可以得到等腰三角形中哪些线段相等?

教师引导学生寻找等腰三角形中其他相等的线段,如:两腰上的高,两腰上的中线,两底角的平分线等。

(通过学生动手实践,增强学生动手能力,引导学生合作探究,更深入地认识等腰三角形和性质,启迪学生的发散思维。)

(六)心得与体会(4′)

这节课我们主要研究了什么内容?你有哪些收获?

请用“通过今天这堂课的研究,我明白了(),我的收获与感受有(),我还有疑惑之处是()”的模式来总结、评价这堂课的学习。

(让学生按上述的模式进行小结,通过对本节课的回顾,增强学生对等腰三角形的理解和对轴对称图形的理解,培养学生的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心。)

(七)练习与作业(1′)

1、略(详见课件);

2、教科书习题14.3第1、4、6题;

3、教科书第143页练习题1、2、3。

(让学生体会等腰三角形的性质在现实生活中的应用价值,学会用数学知识解决实际问题,进一步巩固所学知识,及时反馈,查漏补缺,分层次布置作业,满足不同学生的发展需求,体现层次性和开放性。)

设计思想:

现代数学教学观念要求学生从“学会”向“会学”转变。所以本节课在教学方法的设计上,把重点放在了逐步展示知识的形成过程上,先让学生通过剪纸来认识等腰三角形;再通过折纸、猜测、验证等腰三角形的性质;然后运用全等三角形的知识加以论证,在教学设计中遵循由个别形象到一般抽象、由感性到理性的认知规律,使学生的思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,真正实现学生为主体的教学宗旨。在教学设计中还突出了三个注重:1、注重让学生参与知识的形成过程,体现应用数学知识解决问题的乐趣;2、注重师生间、学生间的互动协作,共同提高;3、注重知能统一,让学生在获取知识的同时,掌握方法,灵活运用。

《《等腰三角形性质》说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式